

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE in Mechanics 2 (6678_01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016 Publications Code 6678_01_1606_MS All the material in this publication is copyright © Pearson Education Ltd 2016

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75.

2. The Edexcel Mathematics mark schemes use the following types of marks:

<u>`M' marks</u>

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.

e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

(i) should have the correct number of terms

(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

<u>'A' marks</u>

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

<u>'B' marks</u>

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.

N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.

- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations
 - M(A) Taking moments about A.
 - N2L Newton's Second Law (Equation of Motion)
 - NEL Newton's Experimental Law (Newton's Law of Impact)
 - HL Hooke's Law
 - SHM Simple harmonic motion
 - PCLM Principle of conservation of linear momentum
 - RHS, LHS Right hand side, left hand side.

Q	Scheme	Marks	Notes
1a	$t=0, v=11 \implies r=11$	B1	
	$t=2, v=3 \Rightarrow 4p+2q+11=3,$	M1	Accept $4p + 2q + r = 3$
	4p + 2q = -8	A1	Any equivalent unsimplified form with 11 used
	Differentiate to find acceleration	M1	OR use symmetry, $t = 4, v = 11$
	a = 2pt + q	A1	$\Rightarrow 11 = 16p + 4q + 11 , 4p + q = 0$
	$t = 2, a = 0 \implies 4p + q = 0$	DM1	2^{nd} eqn in $p \& q$ and solve for $p \& q$ Dependent on both previous m marks
	$\Rightarrow -q + 2q = -8, \ q = -8, \ p = 2$	A1	
	$\left(v = 2t^2 - 8t + 11\right)$		
	$t = 3, a = 4t - 8 = 4 (ms^{-2})$	A1	
		(8)	
1a alt	Min speed at $t = 2 \implies$	B1	
	$v = (pt^{2} + qt + r) = k(t-2)^{2} + c$		
		M1	Completed square form.
	$v = k\left(t-2\right)^2 + 3$	A1	Correct completed square form
	$t=0, v=11 \Rightarrow 4k+3=11,$	M1	Solve for <i>k</i>
	<i>k</i> = 2	A1	$v = 2(t-2)^{2} + 3(=2t^{2} - 8t + 11)$
	Differentiate to find acceleration	DM1	Dependent on both previous m marks
	a = 4(t-2)	A1	
	$t = 3, a = 4 (m s^{-2})$	A1	
		(8)	
	Integrate:		follow their coefficients found in (a)
1b	$\int 2(t-2)^2 + 3dt = \frac{2}{3}(t-2)^3 + 3t(+C)$	M1	Accept in p, q, r
	or $\int 2t^2 - 8t + 11dt = \frac{2}{3}t^3 - 4t^2 + 11t(+C)$		
	At most one error seen	Alft	For their coefficients
	All correct	A1ft	For their coefficients provided $\neq 0$
	$\left[\frac{2}{3}(t-2)^3 + 3t\right]_2^3 = \left(\frac{2}{3}+9\right) - (0+6) \text{or}$		Use of $t = 2, t = 3$ as limits on a definite integral (or subtract distances to cancel
	$\left[\frac{2}{3}t^{3} - 4t^{2} + 11t\right]_{2}^{3}$	DM1	<i>C</i>). Dependent on having integrated.
	$= (18 - 36 + 33) - \left(\frac{16}{3} - 16 + 22\right)$		Allow with <i>p</i> , <i>q</i> , <i>r</i>

Q	Scheme	Marks	Notes
	$3\frac{2}{3}$ (m)	A1	Accept exact equivalent or 3.7 or better
		(5)	
		[13]	

Q	Scheme	Marks	Notes
2a		M1	Equation of motion up or down the road. Requires all 3 terms. Condone sign errors and trig confusion. Must be dimensionally correct.
	$F = mg\sin\theta + R (F = R + 392)$	A1	Correct equation up the road
	$G + mg\sin\theta = R (G = R - 392)$	A1	Correct equation down the road
	$F = \frac{3P}{12.5} \text{ or } G = \frac{P}{12.5}$ $\Rightarrow \frac{3P}{12.5} = 392 + R \text{ or } \frac{P}{12.5} = R - 392$	B1	Use of $F = \frac{P}{v}$ at least once
	$\Rightarrow \frac{3P}{12.5} = 392 + R \text{ or } \frac{P}{12.5} = R - 392$ $\frac{2P}{12.5} = 2 \times 392 , \ 2R = \frac{4P}{12.5}$	M1	Solve simultaneous equations for <i>P</i> or <i>R</i> , provided $F \neq G$ and <i>P</i> and 3 <i>P</i> used correctly
	P = 4900 (500g), R = 784 (80g)	A1	CSO. Both values correct. Accept 2sf, 3sf or an exact multiple of g
		(6)	
2b	Must be using work-energy.		
	KE lost = PE gained + WD against R	M1	Equation needs all 3 terms and no extras. Condone sign errors.
	$\frac{1}{2} \times 800 \times 12.5^{2}$ = 800 \times 9.8 \times $\frac{d}{20}$ + (their R) \times d	A1	At most 1 error. Allow with R (with trig. substituted) (62500 = 392d + Rd)
		A1ft	Correct equation in their <i>R</i> (with trig. substituted)
	$d = \frac{62500}{1176} = 53.1(\mathrm{m})$	A1	CSO. Accept 53(m)
		(4)	
		[10]	
		L - J	

Q	Scheme	Marks	Notes
3.	Since this question is about the magnitude or order" throughout.	of the imp	ulse, condone subtraction in the "wrong
	$m\mathbf{v} - m\mathbf{u} = 0.6(2c\mathbf{i} - c\mathbf{j} - c\mathbf{i} - 2c\mathbf{j})$	M1	Impulse = change in momentum Marking the RHS only
	$= 0.6 (c\mathbf{i} - 3c\mathbf{j})$	A1	
	Magnitude = $0.6\sqrt{c^2 + 9c^2}$	DM1	Correct use of Pythagoras' theorem on $m\mathbf{v} - m\mathbf{u}$ or $\mathbf{v} - \mathbf{u}$ Marking the RHS only. Dependent on the previous M1
	$=0.6\sqrt{10}c \left(=0.6\sqrt{10c^2}\right)$	A1	Accept $\sqrt{10}c$ for change in velocity
	The next two marks are not available to a ca	andidate v	who has equated a scalar to a vector.
	$2\sqrt{10} = 0.6\sqrt{10}c$	DM1	Equate & solve for <i>c</i> Dependent on the previous M1
	$c = \frac{10}{3}$	A1	Accept 3.3 or better
		(6)	
		2.54	ahanga in momentum
alt	$m\mathbf{v} - m\mathbf{u} = 0.6(2c\mathbf{i} - c\mathbf{j} - c\mathbf{i} - 2c\mathbf{j})$	M1	change in momentum
	$= 0.6(c\mathbf{i} - 3c\mathbf{j})$	A1	
	Square of magnitude	DM1	
	$= 0.36(10c^2)$	A1	
	The next two marks are not available to a ca	andidate v	
	$40 = 0.36(c^2 + 9c^2) ,$	DM1	Equate & solve for <i>c</i>
	$c = \frac{10}{3}$	A1	
		(6)	
alt	$\begin{pmatrix} 2\sqrt{10}\cos\theta\\ 2\sqrt{10}\sin\theta \end{pmatrix} = 0.6 \begin{pmatrix} 2c-c\\ -c-2c \end{pmatrix}$	M1	Impulse momentum equation
	$= 0.6c \begin{pmatrix} 1 \\ -3 \end{pmatrix}$	A1	Correct equation
	$2\sqrt{10}\cos\theta = 0.6c$ $2\sqrt{10}\sin\theta = -3 \times 0.6c$	DM1	Compare coefficients and form equation for θ
	$2\sqrt{10}\sin\theta = -3 \times 0.6c$ $\tan\theta = -3 \implies \cos\theta = (\pm)\frac{1}{\sqrt{10}}$	A1	$\cos\theta$ or $\sin\theta$ correct
	$2\sqrt{10}\cos\theta = 0.6c$	DM1	
	$\Rightarrow c = \frac{10}{3}$	A1	

alt	mu mv	M1	Impulse momentum triangle Units used for the vectors must be dimensionally correct
	Sides of magnitude $\sqrt{5}c, \sqrt{5}c, \frac{10\sqrt{10}}{3}$ or $\frac{3\sqrt{5}c}{5}, \frac{3\sqrt{5}c}{5}, 2\sqrt{10}$	A1	
	$\mathbf{u} \cdot \mathbf{v} = \begin{pmatrix} c \\ 2c \end{pmatrix} \cdot \begin{pmatrix} 2c \\ -c \end{pmatrix}$	DM1	Use of scalar product
	$=2c^2-2c^2=0$: at 90°	A1	to show velocities perpendicular
	$(0.6 \times \sqrt{5}c)^2 + (0.6 \times \sqrt{5}c)^2 = (2\sqrt{10})^2$	DM1	Use of Pythagoras' theorem in a right angled triangle
	$\frac{18c^2}{5} = 40 , c = \frac{10}{3}$	A1	
		(6)	

Q		Scher	ne	Marks	
4 a		Triangle	sector		Mass ratios
	mass	4.5	4π	B1	
			(=12.56)	B1	Distances
	c of m	$\frac{2}{2} \times \frac{3\sqrt{2}}{\sqrt{2}}$	$\frac{16\sqrt{2}}{(=2.40)}$		Distances from AD are $-\frac{1}{2} \times \frac{3\sqrt{2}}{2}$
	nom o	3 2	3π (2π		5 Z
		(=1.41)	$\frac{4\pi}{(=12.56)}$ $\frac{16\sqrt{2}}{3\pi}(=2.40)$		and $\frac{16\sqrt{2}}{3\pi} - \frac{3\sqrt{2}}{2} (= 0.280)$
	:	(Moments about an axis through <i>O</i> and parallel to <i>DA</i> .
	$4\pi \times \frac{16\sqrt{2}}{2}$	$-4.5\sqrt{2} = \frac{1}{2}$	$\frac{01\sqrt{2}}{6} = (4\pi - 4.5)d$	M1	Terms must be dimensionally
	3π	l	6)		correct.
				A1	Shapes combined correctly. Correct unsimplified equation
	101	$\overline{2}$		711	
	$d = \frac{101\sqrt{4}}{6(4\pi - 4)}$	$\frac{2}{4.5}$ = 2.951	l		(distance from <i>O</i>)
	Distance fro	m $DA = 2.9$	$951\frac{3\sqrt{2}}{2}$	A1	Accept $\frac{101\sqrt{2}}{6(4\pi - 4.5)} - \frac{3\sqrt{2}}{2}$
			² 830(0.83) m	111	$6(4\pi - 4.5)$ 2
		0.0	(0.00) m	(5)	
4a alt	mass	Triangle 4.5	sector		
art			4π (=12.56)	B1	Mass ratios
	c of m from	1	$\frac{16\sqrt{2}}{3\pi} \times \frac{1}{\sqrt{2}} = \frac{16}{3\pi}$	D1	Distances
	both axes		$3\pi \sqrt{2} 3\pi$	B1	Distances
	OC,OB				
	$4\pi \times \frac{16}{4\pi}$	$4.51 = (4\pi -$	$(45)\overline{x}$	M1	Moments about an axis through <i>O</i> . Terms must be dimensionally
	3π				correct. Condone sign error(s)
		101		A 1	
	$\left(\overline{x} = \overline{y} = \frac{1}{6}\right)$	$4\pi - 4.5)$		A1	Correct unsimplified equation
	$d = \frac{101\sqrt{2}}{6(4\pi - 4.5)}$				Distance from <i>O</i>
		/			
	Distance fro	m $DA = 2.9$	$951\frac{3\sqrt{2}}{2}$	A1	
			² 830(0.83) m		
				(5)	

4b	$D \xrightarrow{\frac{3\sqrt{2}}{2}(2.12)} 0.830 \text{ m}$		
	$\tan \theta = \frac{\text{their } 0.830}{2.12} \text{ or } \tan \phi = \frac{2.12}{\text{their } 0.830}$	M1	Use of tan to find a relevant angle:
	21.4° or 68.6°	A1	
	Angle between DC and downward vertical = 135° - their θ	M1	Correct method for the required angle
	= 114°	A1	The Q asks for the angle to the nearest degree.
		(4)	
4balt	$GD^{2} = OD^{2} + OG^{2} - 2OD.OC \cos 45$ $(GD = 2.28) \qquad \frac{\sin 45}{DG} = \frac{\sin \theta}{OG}$	M1	Complete method to find angle <i>ODG</i>
	$\Rightarrow \theta = 66.4^{\circ}$	A1	
		M1	Correct method for the required angle
	Required angle $=180-66.4=114^{\circ}$	A1	The Q asks for the angle to the nearest degree.
		(4)	
		[9]	

5aM(A): $d \cos \theta \times 5g = 4P$ M1Terms must be dimensionally correct. Condone trig confusionResolving horizontally: $P \sin \theta = F$ B1Requires all 3 terms. Condone trig confusion and sign errorsResolving vertically: $P \cos \theta + R = 5g$ M1Requires all 3 terms. Condone trig confusion and sign errors $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1Correct equation $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1Ferme errors $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1Ferme errors $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1Substitute for $P to find R \text{ or } F$ Dependent on both previous M marks One force correct. Accept equivalent forms e.g. $R = \frac{20g - 5gd + 20g \tan^2 \theta}{4(1 + \tan^2 \theta)}$ Sa alt $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{F \cos \theta}{\sin \theta}$ M1 $R = 5g - \frac{F \cos \theta}{\sin \theta}$ M1 $R = 20 g \cos \theta - 20 g \cos \theta + 5g d \cos \theta$ DM1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{\sin \theta}$ DM1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ DM1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1 $R = 5g - \frac{5gd \cos^2 \theta}{4}$	Q	Scheme	Marks	Notes
Conduct ing contusionResolving horizontally: $P \sin \theta = F$ B1Resolving vertically: $P \cos \theta + R = 5g$ M1Requires all 3 terms. Condone trig confusion and sign errorsDM1DM1DM1Durenter equation $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1Correct equation $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1DM1 $F = \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta + 4}{4}$ M1 $R = 5g - \frac{5gd \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta}{\sin \theta}$ M1 $R = 5g - \frac{F \cos \theta}{\sin \theta}$ M1 $R = 5g - \frac{F \cos \theta}{\sin \theta}$ M1 $R = 5g - \frac{F \cos \theta}{\sin \theta}$ M1 $R = 5g - \frac{F \cos \theta}{\sin \theta}$ M1 $R = 5g - \frac{5gd \cos^2 \theta}{4}$ M1 $R = 5g - \frac{5gd \cos^2 \theta}{4}$ M1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ M1 $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1 $R = 5g - \frac{5gd \cos^2 \theta}{4}$ </th <th></th> <th></th> <th></th> <th></th>				
Resolving horizontally: $P \sin \theta = F$ B1Requires all 3 terms. Condone trig confusion and sign errorsA1Correct equationSubstitute for P to find R or F Dependent to both previous M marks. $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1Correct equation $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1Substitute for P to find R or F Dependent to both previous M marks. $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1Substitute for P to find R or F Dependent to both previous M marks. $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1Substitute for P to find R or F Dependent to both previous M marks. $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1Substitute forms e.g. $R = \frac{20g - 5gd + 20g \tan^2 \theta}{4(1 + \tan^2 \theta)}$ Sa alt $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1Both forces correct. Accept equivalent forms e.g. $R = \frac{5gd \tan \theta}{4 \sec^2 \theta}$ Sa altM(B): $5g \cos \theta \times (4 - d) + F \sin \theta \times 4 = R \cos \theta \times 4$ M1Needs all three terms. Terms must be dimensionally correct. Condone trig confusionResolve parallel to the rod: $5g \sin \theta = R \sin \theta + F \cos \theta$ M1Requires all 3 terms. Condone trig confusion and sign errors H $A = 4\cos \theta \left(5g - \frac{F \cos \theta}{\sin \theta} \right)$ DM1Eliminate one variable to find F or R Dependent on both previous M marks $4F \left(\sin \theta + \frac{\cos^2 \theta}{\sin \theta} \right)$ A1One force correct $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1Dne force correct $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1Dne force correct $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1Dne force correct $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1Both forces correct	5a	$M(A)$. $u\cos\theta \times 3g = 4r$	IVI I	Condone trig confusion
Resolving vertically: $P\cos\theta + R = 5g$ M1Requires all 3 terms. Condone trig confusion and sign errorsA1Correct equationDM1Substitute for P to find R or F Dependent on both previous M marks $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $F = \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \sin \theta}{5g \cos \theta \times (4-d) + F \sin \theta \times 4 = R \cos \theta \times 4}$ M1Needs all three terms. Terms must be dimensionally correct. Condone trig confusion $Resolve parallel to the rod:5g \sin \theta = R \sin \theta + F \cos \thetaB1At most one errorA1At most one errorR = 5g - \frac{F \cos \theta}{\sin \theta}Sg \cos \theta \times (4-d) + F \sin \theta \times 4= 4 \cos \theta \left(5g - \frac{F \cos \theta}{\sin \theta} \right)= 20g \cos \theta - 20g \cos \theta + 5gd \cos \thetaF = \frac{5gd \cos \theta \sin \theta}{4}R = 5g - \frac{5gd \cos \theta^2 \theta}{4}A1Both forces correct$				
Resolving vehiculty. $F \cos \theta + K = 3g$ M1confusion and sign errorsA1Correct equationDM1Substitute for P to find R or F Dependent on both previous M marks $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1forms e.g. $R = \frac{20g - 5gd + 20g \tan^2 \theta}{4(1 + \tan^2 \theta)}$ Both forces correct. Accept equivalent $F = \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1Both forces correct. Accept equivalentforms e.g. $F = \frac{5gd \tan \theta}{4\sec^2 \theta}$ (8)Resolve parallel to the rod: $5g \sin \theta = R \sin \theta + F \cos \theta$ B1A1Correct equation $\Rightarrow R = 5g - \frac{F \cos \theta}{\sin \theta}$ Sig $\cos \theta \times (4 - d) + F \sin \theta \times 4 = R \cos \theta \times 4$ B1A1Correct equation $\Rightarrow R = 5g - \frac{F \cos \theta}{\sin \theta}$ B1 $\Rightarrow R = 5g - \frac{F \cos \theta}{\sin \theta}$ $= 4\cos \theta \left(5g - \frac{F \cos \theta}{\sin \theta}\right)$ $= 20g \cos \theta - 20g \cos \theta + 5gd \cos \theta$ $F = \frac{5gd \cos^2 \theta}{4}$ A1 $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1B0B1B1A1Correct equation $\Rightarrow R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1B2B3B4B4B5B5B1B1B1B1B1B2B2B3B4B4B4B4B4B4<		Resolving horizontally: $P\sin\theta = F$	B1	
Image: contract of a contra		Resolving vertically: $P\cos\theta + R = 5g$	M1	
DM1DM1Substitute for P to find R or F Dependent on both previous M marks One force correct. Accept equivalent forms e.g. $R = \frac{20g - 5gd + 20g \tan^2 \theta}{4(1 + \tan^2 \theta)}$ $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1Both forces correct. Accept equivalent forms e.g. $F = \frac{5gd \tan \theta}{4sec^2 \theta}$ Sa altM(B): $5g \cos \theta \times (4 - d) + F \sin \theta \times 4 = R \cos \theta \times 4$ M1Needs all three terms. Terms must be dimensionally correct. Condone trig confusionResolve parallel to the rod: $5g \sin \theta = R \sin \theta + F \cos \theta$ M1At most one errorResolve parallel to the rod: $5g \sin \theta = R \sin \theta + F \cos \theta$ M1Requires all 3 terms. Condone trig confusion and sign errors $B1$ At most one error $B2$ $B2$ $B2$ $B3$ $B2$ $B3$ $B3$ $B4$ $B4$ $B6$ $B4$ $B6$ $B4$ $B6$ $B4$ $B6$ $B4$ $B6$ $B4$ $B6$ <th></th> <th></th> <th></th> <th></th>				
DM1Dependent on both previous M marks One force correct. Accept equivalent forms e.g. $R = \frac{20g - 5gd + 20g \tan^2 \theta}{4(1 + \tan^2 \theta)}$ $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1forms e.g. $R = \frac{20g - 5gd + 20g \tan^2 \theta}{4(1 + \tan^2 \theta)}$ Sa alt $F = \frac{5gd \cos \theta \sin \theta}{4}$ A1Both forces correct. Accept equivalent forms e.g. $F = \frac{5gd \tan \theta}{4\sec^2 \theta}$ M(B): $5g \cos \theta \times (4 - d) + F \sin \theta \times 4 = R \cos \theta \times 4$ M1Needs all three terms. Terms must be dimensionally correct. Condone trig confusionResolve parallel to the rod: $5g \sin \theta = R \sin \theta + F \cos \theta$ M1Requires all 3 terms. Condone trig confusion and sign errors $R = 5g - \frac{F \cos \theta}{\sin \theta}$ M1Correct equation $\Rightarrow R = 5g - \frac{F \cos \theta}{\sin \theta}$ DM1Eliminate one variable to find F or R Dependent on both previous M marks $4F\left(\sin \theta + \frac{\cos^2 \theta}{\sin \theta}\right)$ DM1Eliminate one variable to find F or R Dependent on both previous M marks $4F\left(\sin \theta + \frac{\cos^2 \theta}{\sin \theta}\right)$ A1One force correct $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1Dne force correct $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1Both forces correct			A1	<u> </u>
$R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1 Dependent on both previous M marks One force correct. Accept equivalent forms e.g. $R = \frac{20g - 5gd + 20g \tan^2 \theta}{4(1 + \tan^2 \theta)}$ R = $\frac{5gd \cos \theta \sin \theta}{4}$ A1 Both forces correct. Accept equivalent forms e.g. $F = \frac{5gd \tan \theta}{4 \sec^2 \theta}$ (8) (8) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9			DM1	
$R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1 forms e.g. $R = \frac{20g - 5gd + 20g \tan^2 \theta}{4(1 + \tan^2 \theta)}$ $F = \frac{5gd \cos \theta \sin \theta}{4}$ A1 Both forces correct. Accept equivalent forms e.g. $F = \frac{5gd \tan \theta}{4\sec^2 \theta}$ (8) (8) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9				
$F = \frac{5gd \cos \theta \sin \theta}{4}$ $F = \frac{5gd \cos \theta \sin \theta}{4}$ $A1$ Both forces correct. Accept equivalent forms e.g. $F = \frac{5gd \tan \theta}{4 \sec^2 \theta}$ (8) $M(B): 5g \cos \theta \times (4-d) + F \sin \theta \times 4 = R \cos \theta \times 4$ $A1$ Needs all three terms. Terms must be dimensionally correct. Condone trig confusion $A1$ At most one error $A1$ At most one error $A1$ At most one error $A1$ $A1$ $Correct equation A1 Correct equation A1 Correct equation A1 A1 A1 A1 A1 A1 A1 A1$		$5 a d \cos^2 \theta$		
$F = \frac{5gd \cos \theta \sin \theta}{4}$ $F = \frac{5gd \cos \theta \sin \theta}{4}$ $A1$ Both forces correct. Accept equivalent forms e.g. $F = \frac{5gd \tan \theta}{4 \sec^2 \theta}$ (8) $M(B): 5g \cos \theta \times (4-d) + F \sin \theta \times 4 = R \cos \theta \times 4$ $A1$ Needs all three terms. Terms must be dimensionally correct. Condone trig confusion $A1$ At most one error $A1$ At most one error $A1$ At most one error $A1$ $A1$ $Correct equation A1 Correct equation A1 Correct equation A1 A1 A1 A1 A1 A1 A1 A1$		$R = 5g - \frac{5gu \cos \theta}{4}$	A1	forms e.g. $R = \frac{20g - 5gd + 20g \tan^2 \theta}{100}$
$F = \frac{5gd \cos\theta \sin\theta}{4}$ A1 Both forces correct. Accept equivalent forms e.g. $F = \frac{5gd \tan\theta}{4 \sec^2\theta}$ (8) 5a alt $K(B): \\ 5g \cos\theta \times (4-d) + F \sin\theta \times 4 = R\cos\theta \times 4$ A1 A1 At most one error Resolve parallel to the rod: $Sg \sin\theta = R\sin\theta + F\cos\theta$ B1 At most one error A1 Correct equation $\Rightarrow R = 5g - \frac{F\cos\theta}{\sin\theta}$ B1 At most one error A1 Correct equation $\Rightarrow R = 5g - \frac{F\cos\theta}{\sin\theta}$ BMI Eliminate one variable to find <i>F</i> or <i>R</i> Dependent on both previous M marks $4F\left(\sin\theta + \frac{\cos^2\theta}{\sin\theta}\right)$ $= 20g \cos\theta - 20g \cos\theta + 5gd \cos\theta$ $F = \frac{5gd \cos\theta \sin\theta}{4}$ A1 DMI Eliminate one correct $R = 5g - \frac{5gd \cos^2\theta}{4}$ A1 DMI Eliminate one variable to find <i>F</i> or <i>R</i> Dependent on both previous M marks $4F\left(\sin\theta + \frac{\cos^2\theta}{3\pi\theta}\right)$ $= 20g \cos\theta - 20g \cos\theta + 5gd \cos\theta$ A1 DMI DMI Eliminate one variable to find <i>F</i> or <i>R</i> Dependent on both previous M marks $4F\left(\sin\theta + \frac{\cos^2\theta}{4}\right)$ A1 DMI DMI DMI Eliminate one variable to find <i>F</i> or <i>R</i> Dependent on both previous M marks $4F\left(\sin\theta + \frac{\cos^2\theta}{4}\right)$ A1 DMI		4		$4(1+\tan^2\theta)$
$F = \frac{5gd \cos\theta \sin\theta}{4}$ A1 forms e.g. $F = \frac{5gd \tan\theta}{4\sec^2\theta}$ (8) (8) M(B): $5g \cos\theta \times (4-d) + F \sin\theta \times 4 = R\cos\theta \times 4$ (9) Needs all three terms. Terms must be dimensionally correct. Condone trig confusion A1 At most one error Resolve parallel to the rod: $5g \sin\theta = R\sin\theta + F\cos\theta$ B1 At most one error A1 Correct equation $\Rightarrow R = 5g - \frac{F\cos\theta}{\sin\theta}$ $5g \cos\theta \times (4-d) + F\sin\theta \times 4$ $= 4\cos\theta \left(5g - \frac{F\cos\theta}{\sin\theta}\right)$ DM1 Eliminate one variable to find F or R Dependent on both previous M marks $4F\left(\sin\theta + \frac{\cos^2\theta}{\sin\theta}\right)$ $= 20g \cos\theta - 20g \cos\theta + 5gd \cos\theta$ $F = \frac{5gd \cos^2\theta}{4}$ A1 One force correct $R = 5g - \frac{5gd \cos^2\theta}{4}$ A1 Both forces correct $R = 5g - \frac{5gd \cos^2\theta}{4}$ A1				
Image: Constraint of the second of the se		$F = \frac{5gd\cos\theta\sin\theta}{1}$	A1	
Sa altM(B): $5g \cos\theta \times (4-d) + F \sin\theta \times 4 = R \cos\theta \times 4$ M1Needs all three terms. Terms must be dimensionally correct. Condone trig confusionResolve parallel to the rod: $5g \sin\theta = R \sin\theta + F \cos\theta$ A1A1A1 most one errorResolve parallel to the rod: $5g \sin\theta = R \sin\theta + F \cos\theta$ B1At most one error 1 1 A1Correct equation 2 2 3 3 2 3 4 5 3 3 4 4 3 3 4 4 5 3 4 4 4 3 4 4 4 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4		4		forms e.g. $F = \frac{3}{4 \sec^2 \theta}$
5a altM(B): $5g \cos\theta \times (4-d) + F \sin\theta \times 4 = R\cos\theta \times 4$ M1Needs all three terms. Terms must be dimensionally correct. Condone trig confusionResolve parallel to the rod: $5g \sin\theta = R \sin\theta + F \cos\theta$ A1At most one errorResolve parallel to the rod: $5g \sin\theta = R \sin\theta + F \cos\theta$ M1Requires all 3 terms. Condone trig confusion and sign errorsB1At most one errorA1Correct equation $\Rightarrow R = 5g - \frac{F \cos\theta}{\sin\theta}$ DM1 $5g \cos\theta \times (4-d) + F \sin\theta \times 4$ $= 4\cos\theta \left(5g - \frac{F \cos\theta}{\sin\theta}\right)$ DM1 $4F\left(\sin\theta + \frac{\cos^2\theta}{\sin\theta}\right)$ DM1 $4F\left(\sin\theta + \frac{\cos^2\theta}{4}\right)$ A1 $R = 5g - \frac{5gd \cos\theta \sin\theta}{4}$ A1 $R = 5g - \frac{5gd \cos^2\theta}{4}$ A1Both forces correctImage: Correct equation equ			(8)	
5a alt $5g \cos\theta \times (4-d) + F \sin\theta \times 4 = R\cos\theta \times 4$ M1Terms must be dimensionally correct. Condone trig confusionResolve parallel to the rod: $5g \sin\theta = R\sin\theta + F\cos\theta$ A1At most one errorRequires all 3 terms. Condone trig confusion and sign errorsB1At most one error alt Alt most one errorA1Correct equation alt Alt most one errorA1Correct equation alt blt At most one errorA1 alt blt $Correct$ equationA1 alt blt blt blt alt blt		M(B)	(-)	Needs all three terms.
$\frac{3g \cos \theta \times (4-d) + F \sin \theta \times 4 = R \cos \theta \times 4}{R}$ Condone trig confusion A1 At most one error Resolve parallel to the rod: $5g \sin \theta = R \sin \theta + F \cos \theta$ B1 At most one error A1 Correct equation $\Rightarrow R = 5g - \frac{F \cos \theta}{\sin \theta}$ DM1 Eliminate one variable to find <i>F</i> or <i>R</i> Dependent on both previous M marks $4F\left(\sin \theta + \frac{\cos^2 \theta}{\sin \theta}\right)$ $= 20g \cos \theta - 20g \cos \theta + 5gd \cos \theta$ $F = \frac{5gd \cos \theta \sin \theta}{4}$ A1 One force correct $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1 Both forces correct $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1 Contended $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1 Contended $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1 Contended $R = 5g - \frac{5gd \cos^2 \theta}{4}$ Condone trig confusion $R = 5g - \frac{5gd \cos^2 \theta}{4}$ Condone trig confusion $R = 5g - \frac{5gd \cos^2 \theta}{4}$ Condone trig confusion $R = 5g - \frac{5gd \cos^2 \theta}{4}$ Condone trig confusion $R = 5g - \frac{5gd \cos^2 \theta}{4}$ Condone trig confusion $R = 5g - \frac{5gd \cos^2 \theta}{4}$ Condone trig confusion $R = 5g - \frac{5gd \cos^2 \theta}{4}$ Condone trig confusion $R = 5g - \frac{5gd \cos^2 \theta}{4}$ Condone trig confusion $R = 5g - \frac{5gd \cos^2 \theta}{4}$ Condone trig confusion $R = 5g - \frac{5gd \cos^2 \theta}{4}$ Condone trig confusion $R = 5g - \frac{5gd \cos^2 \theta}{4}$ Condone trig confusion $R = 5g - \frac{5gd \cos^2 \theta}{4}$ Condone trig confusion Confusion Confusion Confusion Confusion $R = 5g - \frac{5gd \cos^2 \theta}{4}$ Confusion	5a alt		M1	
Resolve parallel to the rod: $5g \sin \theta = R \sin \theta + F \cos \theta$ M1Requires all 3 terms. Condone trig confusion and sign errorsB1At most one errorA1Correct equation $\Rightarrow R = 5g - \frac{F \cos \theta}{\sin \theta}$ DM1 $5g \cos \theta \times (4-d) + F \sin \theta \times 4$ $= 4 \cos \theta \left(5g - \frac{F \cos \theta}{\sin \theta} \right)$ DM1 $4F\left(\sin \theta + \frac{\cos^2 \theta}{\sin \theta}\right)$ DM1 $4F\left(\sin \theta + \frac{\cos^2 \theta}{\sin \theta}\right)$ A1 $R = 5g - \frac{5gd \cos \theta \sin \theta}{4}$ A1 $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1A1Defence correct		$3g\cos\theta \times (4-a) + F\sin\theta \times 4 = K\cos\theta \times 4$		Condone trig confusion
$5g \sin \theta = R \sin \theta + F \cos \theta$ M1confusion and sign errorsB1At most one errorA1Correct equation $\Rightarrow R = 5g - \frac{F \cos \theta}{\sin \theta}$ Eliminate one variable to find F or R $5g \cos \theta \times (4-d) + F \sin \theta \times 4$ DM1Eliminate one variable to find F or R $= 4 \cos \theta \left(5g - \frac{F \cos \theta}{\sin \theta} \right)$ DM1Eliminate one variable to find F or R $4F \left(\sin \theta + \frac{\cos^2 \theta}{\sin \theta} \right)$ $= 20g \cos \theta - 20g \cos \theta + 5gd \cos \theta$ A1 $F = \frac{5gd \cos \theta \sin \theta}{4}$ A1One force correct $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1Both forces correct			A1	At most one error
$3g \sin \theta = R \sin \theta + P \cos \theta$ B1 At most one error A1 Correct equation $\Rightarrow R = 5g - \frac{F \cos \theta}{\sin \theta}$ $5g \cos \theta \times (4 - d) + F \sin \theta \times 4$ $= 4 \cos \theta \left(5g - \frac{F \cos \theta}{\sin \theta} \right)$ DM1 Eliminate one variable to find <i>F</i> or <i>R</i> Dependent on both previous M marks $4F \left(\sin \theta + \frac{\cos^2 \theta}{\sin \theta} \right)$ $= 20g \cos \theta - 20g \cos \theta + 5gd \cos \theta$ $F = \frac{5gd \cos \theta \sin \theta}{4}$ A1 One force correct $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1 Both forces correct			M1	Requires all 3 terms. Condone trig
A1Correct equation $\Rightarrow R = 5g - \frac{F \cos \theta}{\sin \theta}$ R $5g \cos \theta \times (4-d) + F \sin \theta \times 4$ Eliminate one variable to find F or R $= 4 \cos \theta \left(5g - \frac{F \cos \theta}{\sin \theta} \right)$ DM1Eliminate one variable to find F or R $4F \left(\sin \theta + \frac{\cos^2 \theta}{\sin \theta} \right)$ $= 20g \cos \theta - 20g \cos \theta + 5gd \cos \theta$ R $F = \frac{5gd \cos \theta \sin \theta}{4}$ A1One force correct $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1Both forces correct		$5g\sin\theta = R\sin\theta + F\cos\theta$	1011	confusion and sign errors
$\Rightarrow R = 5g - \frac{F \cos \theta}{\sin \theta}$ $5g \cos \theta \times (4 - d) + F \sin \theta \times 4$ $= 4 \cos \theta \left(5g - \frac{F \cos \theta}{\sin \theta} \right)$ DM1 Eliminate one variable to find <i>F</i> or <i>R</i> Dependent on both previous M marks $4F \left(\sin \theta + \frac{\cos^2 \theta}{\sin \theta} \right)$ $= 20g \cos \theta - 20g \cos \theta + 5gd \cos \theta$ $F = \frac{5gd \cos \theta \sin \theta}{4}$ A1 One force correct $R = 5g - \frac{5gd \cos^2 \theta}{4}$ A1 Both forces correct			B1	At most one error
$= 4\cos\theta \left(5g - \frac{F\cos\theta}{\sin\theta}\right) \qquad DM1 \qquad \text{Eliminate one variable to find } F \text{ or } R \\ \text{Dependent on both previous } M \text{ marks} \\ 4F \left(\sin\theta + \frac{\cos^2\theta}{\sin\theta}\right) \\ = 20g\cos\theta - 20g\cos\theta + 5gd\cos\theta \\ \hline F = \frac{5gd\cos\theta + 5gd\cos\theta}{4} \qquad A1 \qquad \text{One force correct} \\ \hline R = 5g - \frac{5gd\cos^2\theta}{4} \qquad A1 \qquad \text{Both forces correct} \\ \hline 0 = 100000000000000000000000000000000$			A1	Correct equation
$= 4\cos\theta \left(5g - \frac{F\cos\theta}{\sin\theta}\right) \qquad DM1 \qquad \text{Eliminate one variable to find } F \text{ or } R \\ \text{Dependent on both previous } M \text{ marks} \\ 4F \left(\sin\theta + \frac{\cos^2\theta}{\sin\theta}\right) \\ = 20g\cos\theta - 20g\cos\theta + 5gd\cos\theta \\ \hline F = \frac{5gd\cos\theta + 5gd\cos\theta}{4} \qquad A1 \qquad \text{One force correct} \\ \hline R = 5g - \frac{5gd\cos^2\theta}{4} \qquad A1 \qquad \text{Both forces correct} \\ \hline 0 = 100000000000000000000000000000000$		$\Rightarrow R - 5a - \frac{F\cos\theta}{2}$		
$= 4\cos\theta \left(5g - \frac{F\cos\theta}{\sin\theta}\right) \qquad DM1 \qquad \text{Eliminate one variable to find } F \text{ or } R \\ \text{Dependent on both previous } M \text{ marks} \\ 4F \left(\sin\theta + \frac{\cos^2\theta}{\sin\theta}\right) \\ = 20g\cos\theta - 20g\cos\theta + 5gd\cos\theta \\ \hline F = \frac{5gd\cos\theta + 5gd\cos\theta}{4} \qquad A1 \qquad \text{One force correct} \\ \hline R = 5g - \frac{5gd\cos^2\theta}{4} \qquad A1 \qquad \text{Both forces correct} \\ \hline 0 = 100000000000000000000000000000000$		$\rightarrow R - 3g - \sin \theta$		
$= 4\cos\theta \left(5g - \frac{F\cos\theta}{\sin\theta}\right) \qquad DM1 \qquad \text{Eliminate one variable to find } F \text{ or } R \\ \text{Dependent on both previous } M \text{ marks} \\ 4F \left(\sin\theta + \frac{\cos^2\theta}{\sin\theta}\right) \\ = 20g\cos\theta - 20g\cos\theta + 5gd\cos\theta \\ \hline F = \frac{5gd\cos\theta + 5gd\cos\theta}{4} \qquad A1 \qquad \text{One force correct} \\ \hline R = 5g - \frac{5gd\cos^2\theta}{4} \qquad A1 \qquad \text{Both forces correct} \\ \hline 0 = 100000000000000000000000000000000$		$5g\cos\theta \times (4-d) + F\sin\theta \times 4$		
$= 4\cos\theta \left(5g - \frac{1}{\sin\theta} \right)$ $= 4\cos\theta \left(5g - \frac{1}{\sin\theta} \right)$ $= 4F \left(\sin\theta + \frac{\cos^2\theta}{\sin\theta} \right)$ $= 20g\cos\theta - 20g\cos\theta + 5gd\cos\theta$ $F = \frac{5gd\cos\theta \sin\theta}{4}$ $R = 5g - \frac{5gd\cos^2\theta}{4}$ $A1$ $Both forces correct$			DM1	
$4F\left(\sin\theta + \frac{\cos^{2}\theta}{\sin\theta}\right)$ $= 20g\cos\theta - 20g\cos\theta + 5gd\cos\theta$ $F = \frac{5gd\cos\theta\sin\theta}{4}$ $R = 5g - \frac{5gd\cos^{2}\theta}{4}$ $A1$ One force correct $A1$ Both forces correct		$=4\cos\theta \left 5g - \frac{1\cos\theta}{\sin\theta} \right $	21111	Dependent on both previous M marks
$= 20g \cos \theta - 20g \cos \theta + 5gd \cos \theta$ $= 20g \cos \theta - 20g \cos \theta + 5gd \cos \theta$ $F = \frac{5gd \cos \theta \sin \theta}{4}$ $R = 5g - \frac{5gd \cos^2 \theta}{4}$ $A1$ Both forces correct $A1$ $Both forces correct$				
$= 20g \cos \theta - 20g \cos \theta + 5gd \cos \theta$ $= 20g \cos \theta - 20g \cos \theta + 5gd \cos \theta$ $F = \frac{5gd \cos \theta \sin \theta}{4}$ $R = 5g - \frac{5gd \cos^2 \theta}{4}$ $A1$ Both forces correct $A1$ $Both forces correct$		$4F\left(\sin\theta + \frac{\cos^2\theta}{2}\right)$		
$F = \frac{5gd\cos\theta\sin\theta}{4}$ A1 One force correct $R = 5g - \frac{5gd\cos^2\theta}{4}$ A1 Both forces correct $R = \frac{5g - \frac{5gd\cos^2\theta}{4}}{1}$ A1 One force correct		$\sin\theta$		
$F = \frac{5gd\cos\theta\sin\theta}{4}$ A1 One force correct $R = 5g - \frac{5gd\cos^2\theta}{4}$ A1 Both forces correct $R = \frac{5g - \frac{5gd\cos^2\theta}{4}}{1}$ A1 One force correct		$= 20g\cos\theta - 20g\cos\theta + 5gd\cos\theta$		
$\frac{4}{R = 5g - \frac{5gd\cos^2\theta}{4}}$ A1 Both forces correct				
4		$F = \frac{C_{OU} + C_{OU} + C_{OU} + C_{OU}}{A}$	A1	One force correct
4		$\overline{5}ad\cos^2\theta$		
4		$R = 5g - \frac{3gu \cos \theta}{4}$	A1	Both forces correct
Image: state of the state o		4		
See next page for part (b)				
See next page for part (b)	<u> </u>			
See next page for part (b)	<u> </u>			
See next page for part (b)				
See next page for part (b)				
				See next page for part (b)

$\mu = \frac{\frac{5gd\cos\theta\sin\theta}{4}}{5g - \frac{5gd\cos^2\theta}{4}}$	M1	Use of $F = \mu R$
$\frac{1}{2}\left(5g - \frac{5gd\cos^2\theta}{4}\right) = \frac{5gd\cos\theta\sin\theta}{4}$	A1	$\left(4 - d\cos^2\theta = 2d\cos\theta\sin\theta\right)$
$4 \times 169 = 120d + 144d$	M1	Use $\tan \theta = \frac{5}{12}$ and solve for <i>d</i>
$d = \frac{169}{66}$	A1	(= 2.6 m or better)
	(4)	
$F = 5gd \times \frac{12}{13} \times \frac{5}{13} \times \frac{1}{4} \left(= \frac{75gd}{169} \right)$	M1	Use $\tan \theta = \frac{5}{12}$
$R = 5g - \frac{5gd}{4} \times \frac{144}{169}$	A1	Both unsimplified expressions
$75gd = \frac{1}{2} (5 \times 169g - 180gd)$	M1	Use of $F = \mu R$ and solve for d
$150gd + 180gd = 845g$, $d = \frac{169}{66}$	A1	(= 2.6 m or better)
	(4)	
$R = 5g - \frac{12}{13}P$, $F = \frac{5}{13}P$	M1	Substitute trig in their equations from resolving.
$\frac{5}{13}P = \frac{1}{2}\left(5g - \frac{12}{13}P\right)$	M1	use $F = \mu R$ and solve for d
$\Rightarrow P = \frac{65}{22}g$	A1	
$d = \frac{4P}{5g\cos\theta} = \frac{169}{66}$	A1	
	[12]	
	$\mu = \frac{4}{5g - \frac{5gd \cos^2 \theta}{4}}$ $\frac{1}{2} \left(5g - \frac{5gd \cos^2 \theta}{4} \right) = \frac{5gd \cos \theta \sin \theta}{4}$ $4 \times 169 = 120d + 144d$ $d = \frac{169}{66}$ $F = 5gd \times \frac{12}{13} \times \frac{5}{13} \times \frac{1}{4} \left(= \frac{75gd}{169} \right)$ $R = 5g - \frac{5gd}{4} \times \frac{144}{169}$ $75gd = \frac{1}{2} (5 \times 169g - 180gd)$ $150gd + 180gd = 845g , d = \frac{169}{66}$ $R = 5g - \frac{12}{13}P , F = \frac{5}{13}P$ $\frac{5}{13}P = \frac{1}{2} \left(5g - \frac{12}{13}P \right)$ $\Rightarrow P = \frac{65}{22}g$	$\mu = \frac{4}{5g - \frac{5gd \cos^2 \theta}{4}}$ M1 $\frac{1}{2} \left(5g - \frac{5gd \cos^2 \theta}{4} \right) = \frac{5gd \cos \theta \sin \theta}{4}$ A1 $4 \times 169 = 120d + 144d$ M1 $d = \frac{169}{66}$ A1 $f = 5gd \times \frac{12}{13} \times \frac{5}{13} \times \frac{1}{4} \left(= \frac{75gd}{169} \right)$ M1 $R = 5g - \frac{5gd}{4} \times \frac{144}{169}$ A1 $75gd = \frac{1}{2} (5 \times 169g - 180gd)$ M1 $150gd + 180gd = 845g , d = \frac{169}{66}$ A1 (4) $R = 5g - \frac{12}{13}P , F = \frac{5}{13}P$ M1 $\frac{5}{13}P = \frac{1}{2} \left(5g - \frac{12}{13}P \right)$ M1 $\frac{5}{13}P = \frac{1}{2} \left(5g - \frac{12}{13}P \right)$ M1 $d = \frac{4P}{5g \cos \theta} = \frac{169}{66}$ A1

Q	Scheme	Marks	Notes
<u>6a</u>	Horizontal motion: $x = 3t$	B1	
	Vertical motion: $y = 4t - \frac{g}{2}t^2$	M1	Correct use of <i>suvat</i> . Condone sign error(s)
		A1	
	$\left(y = 4 \times \frac{x}{3} - \frac{g}{2} \times \frac{x^2}{9}\right), \lambda = -\left(\frac{4\lambda}{3} - \frac{g\lambda^2}{18}\right)$	M1	Use $y = -x$ and form an equation in one variable
	$, \frac{7\lambda}{3} = \frac{g\lambda^2}{18}$	M1	solve for λ
	$\lambda = \frac{42}{g}$ or 4.3 (4.29) Horizontal motion: $x = 3t$	A1 (6)	Not $\frac{30}{7}$
alta	Horizontal motion: $x = 3t$	B1	
	Vertical motion: $y = 4t - \frac{g}{2}t^2$	M1	Correct use of <i>suvat</i> . Condone sign error(s)
		A1	
	$\Rightarrow -3t = 4t - \frac{1}{2}gt^2, \ \left(t = \frac{14}{g}\right)$	M1	Use $y = -x$ and form an equation in one variable
	$\lambda = 3t$	M1	Solve for λ
	$\lambda = 4.3 \qquad (4.29)$	A1 (6)	
6b	At A: $v \rightarrow 3 \text{ (m s}^{-1})$	B1	
	$\frac{\lambda = 3i}{\lambda = 4.3 (4.29)}$ At A: $v \rightarrow 3 \text{ (m s}^{-1)}$ $v \uparrow 4 - g \times \frac{14}{g}$	M1	Complete method using <i>suvat</i> to find $v \uparrow$ with their <i>t</i> or λ
	$=-10 (m s^{-1})$	A1	Accept +10 with direction confirmed by diagram
	Speed = $\sqrt{(\text{their } 10)^2 + (3)^2}$	DM1	Dependent on the first M1 in (b)
	$=\sqrt{109} (m s^{-1})$	A1	(10.4) Allow for $v \uparrow = 10$
	$\tan^{-1}\left(\frac{\text{their 10}}{3}\right) \text{ or } \tan^{-1}\left(\frac{3}{\text{their 10}}\right)$	DM1	Use trig to find a relevant angle. Dependent on the first M1 in (b)
	Direction $= 73.3^{\circ}$ below the horizontal	A1	(1.28 radians) Accept direction 3 i -10 j Do not accept a bearing
		(7)	
Alt 6b	Loss in GPE : $mg\lambda = 42m$	B1	
	Gain in KE : $\frac{1}{2}mv^2 - \frac{1}{2}m \times 25$	M1	Terms must be dimensionally correct. Condone sign error.
		A1	
	Solve for <i>v</i> : $42 = \frac{1}{2}v^2 - \frac{25}{2}$	M1	
	$v = \sqrt{109}$	A1	
	$v\cos\theta = 3$	M1	Use trig. to find a relevant angle
	$\theta = 73.3^{\circ}$ below the horizontal	A1 (7)	Accept correct angle marked correctly on a diagram.
		[13]	

Q	Scheme	Marks	Notes
	$\xrightarrow{3u}$		
7a	$(A (2m)) \qquad \frac{3}{4} \qquad (B (3m)) \qquad e$		
	$\longrightarrow v \qquad \longrightarrow w \qquad ew \longleftarrow$		
	CLM: $6mu = 2mv + 3mw$	M1	Requires all 3 terms. Must be dimensionally correct. Condone sign error(s)
	(6u = 2v + 3w)	A1	This equation defines their directions
	Impact: $w - v = \frac{3}{4} \times 3u \left(= \frac{9}{4}u \right)$	M1	Must be used with <i>e</i> on the correct side
		A1	Penalise inconsistent directions here
	$6u = 2w - \frac{9}{2}u + 3w$	DM1	Solve simultaneous equations for <i>v</i> or <i>w</i> Dependent on the 2 previous M marks
	$w = \frac{21}{10}u = v_B$	A1	One correct
	$v = w - \frac{9}{4}u = \left(\frac{21}{10} - \frac{9}{4}\right)u = -\frac{3}{20}u, \ v_A = \frac{3}{20}u$	A1	Both correct
		(7)	
7b	Speed of <i>B</i> after hitting wall $=\frac{21}{10}ue$	M1(B1)	$e \times$ their w
	Impulse $=\frac{27}{4}mu = 3m\left(\frac{21}{10}u + \frac{21}{10}ue\right)$	M1	for their <i>w</i> . Must be trying to use the correct equation with 3 <i>m</i> .
	$\frac{9}{4} = \frac{21}{10}(1+e), e = \frac{1}{14}$	A1 (3)	
7b alt	Impulse $=\frac{27}{4}mu = 3m\left(\frac{21}{10}u + V\right), \left(V = \frac{3u}{20}\right)$	M1(B1)	Use impulse to find <i>V</i> . Must be trying to use the correct equation with 3 <i>m</i> .
	$\frac{21u}{10}e = \frac{3u}{20} ,$	M1	$V = e \times$ their w .
	$e = \frac{1}{14}$	A1 (3)	
_	Speed of <i>B</i> after second impact = $1 - 21 = 2$	B1ft	Compare two relevant speeds.
7c	$\frac{1}{14} \times \frac{21}{10} u = \frac{3}{20} u$		(ft on their V or their $e \ge 1$ their w)
	Same velocity (and <i>A</i> has a head start), so no collision.	B1 (2)	From correct work only
		[12]	

https://xtremepape.rs/

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom